MAKING SENSE OF MATHEMATICS

After watching the video, Making Sense of Logarithm Properties, complete the following problems.

1. Find the decimal approximations for the following quantities, using a calculator only when needed.
a. $\log 2$
$\log 3$
$\log 6$
$\log 2+\log 3$
b. $\log 6$
$\log 36$
$\log 6+\log 6$
c. $\log 6$
$\log 2$
$\log 72$
$\log 6+\log 6+\log 2$
2. It is a fact that

$$
\begin{aligned}
& \log 3 \approx 0.4771 \\
& \log 5 \approx 0.6990 \\
& \log 7 \approx 0.8451
\end{aligned}
$$

Without using a calculator, approximate the following quantities to four decimal places. (Hint: The properties proved in the video Making Sense of Logarithm Properties will be useful.)
a. $\log 15$
b. $\log 35$
c. $\log 105$
3. Find decimal approximations for the following quantities, using a calculator when needed.
$\log 3$
$\log 3^{2}$
$2 \log 3$

MAKING SENSE OF MATHEMATICS
4. Using the facts given in \#2, approximate:
a. $\log 243$ (Hint: $243=3^{5}$)
b. $\log 45$
c. $\log 5$
d. $\log 7^{a}$
5. Fill in the blanks with the generalization used in the above problems.
a. $\log a b=$ \qquad
b. $\log a^{2} b=$ \qquad
6. Without a calculator, determine if the following are true or false. Explain your reasoning for any false solutions.
a. $\log 5 a=\log 5+\log a$
b. $(\log 2)^{3}=\log 8$
c. $\log 25=2 \log 5$
d. $\log (a+9)=(\log a)(\log 9)$
e. $\log (\sqrt[3]{2+x})=\frac{\log (2+x)}{3}$

