

- 1. The definition of logarithm is if $a^x = y$, then $\log_a y = x$, and if $\log_a y = x$, then $a^x = y$.
 - a. Complete the tables for an exponential function base 10 and a logarithmic function base 10.

х	10 [×]
0	10 ⁰ =1
1	
2	
3	10 ³ = 1000
4	
5	
6	$10^6 = 1000000$
7	
8	
9	
10	

У	log ₁₀ y
1	0
10	
100	
1000	
10000	
10 ⁵	
10 ⁶	
10 ⁷	
10 ⁸	
10 ⁹	
10 ¹⁰	

- b. Ten raised to what power is 1,000,000?
- c. How can the definition of logarithms help you find $\log_{10} 1000000$?
- d. Using the table, estimate $log_{10}99,932$ to the nearest whole number.
- e. Using the table, estimate $10^{3.1}$.

3×	Ŋ	y lo	og₃y
1	-	1	0
3	3	3	1
	Ç	9	
27	2	7	3
	8	1	
	24	43	

2. Complete the tables below. The base is **three** in both tables.

- a. Without using a calculator, compute the following base **three** logarithms.
 - i. log₃ (81)
 - ii. log₃ (243)
 - iii. $\log_3(1)$
 - iv. $\log_{3}(\frac{1}{3})$
 - v. $\log_{3}(\frac{1}{9})$
- 3. Moore's Law states, informally, that the computing power of a chip doubles every two years.
 - a. Make a table showing how the computing power of a chip increases, where *n* is the number of doubling periods.

n	2 ⁿ
0	
1	
2	
3	
4	
5	
6	

- b. According to Moore's Law, how long will it take the computing power of a chip to increase by a factor of 64?
- c. According to Moore's Law, by what factor will the computing power of the chip increase in 16 years?

- 4. Assume the population (p) of a virus in a human body triples every hour.
 - a. If we start with 1 virus in a body, how many will there be in three hours?

t	3 ^t
0	
1	
2	
3	
4	
5	
6	

- b. How long will it take for the population of viruses to be 243?
- c. How many viruses will there be in one day?
- d. Is the equation below a valid representation for the number of viruses in a human body? Why or why not?

 $t = \log_3(p)$ (t = time in hours, p = population)

5. The following is a graph of $y = 4^x$. Use the graph to estimate $\log_4(8000)$.

