

>	Here's another example. If we were asked to find the log, base three of eighty-
one, we would ask the question, three raised to what power is eighty-one?	
Three times three, times three times three, is eighty-one. Or, three raised to the	
fourth power equals eighty-one. The exponent is four, four is the logarithm of	
> eighty-one, when the base is three.	Parker:

Sarah: Right.

Voice- Lets try estimating the log base ten of eight hundred twenty. First, ask yourself,

over

Sarah: ten to what power is eight hundred twenty. It's not an easy answer. But you do know that ten to the second power equals one hundred. And ten to the third power equals one thousand. Right?

So, log base ten of eight hundred twenty, has to be between two, which is too small and three, which is too big. The actual value is close to two and ninetyone hundredths (2.91).

Lets go back to the original question, about when the bacteria will reach five million. Looking at the number of hours and bacteria in the table and graph, we see they are plotted as a logarithm. We can estimate the answer, knowing that ten to the sixth power is one million, that's too small, and ten to the seventh power is ten million, that's too big. So we know that log base ten of five million, is between six and seven.

It turns out that in approximately six and seven tenths hours (6.7), there will be five million bacteria.

To help us generalize, lets look at another example. We know if ten to the sixth and seven tenth is approximately five million, then log base ten of five million, is approximately six and seven tenths.

Using variables, if a base " a " raised to an exponent " y " equals a given number " x ", then log base " a " of " x " is " y ".

Emily: $\quad 6.7$ hours, there will be five million cells by the time you go home.
Sarah: That's some fast growth. Now logs make sense.
Emily: That's another problem solved.

