

After watching the video, Standard Deviation, complete the following problems.

1. Let $x_1 = 2$, $x_2 = 2$, $x_3 = 3$, $x_4 = 6$, $x_5 = 6$. The summation notation is used in the formula for standard deviation. Become more familiar with this notation by evaluating the following expressions.

a.
$$\sum_{i=1}^{5} x_i$$

$$b. \quad \sum_{i=2}^{4} x_i$$

c.
$$\sum_{i=1}^{5} (x_i)^2$$

$$d. \left(\sum_{i=1}^{5} x_i\right)^2$$

e.
$$\sum_{i=1}^{5} (x_i - 3)^2$$

2. Every morning, I get out of bed and do sit-ups until I give up. Here is how it went last week:

Monday	140
Tuesday	179
Wednesday	150
Thursday	197
Friday	150
Saturday	40
Sunday	138

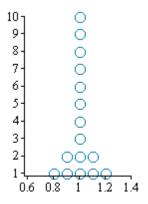
- a. What is my mean number of sit-ups?
- b. What is my standard deviation?

X _i	$X_i - \overline{X}$	$(X_i - \overline{X})^2$
140		
179		
150		
197		
150		
40		
138		

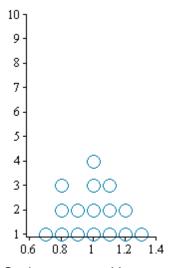
$$\sum (x - \bar{X})^2 =$$

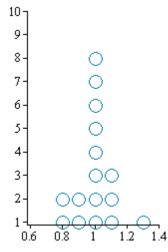
c. I don't think Saturday should count, because I was interrupted when my kitten jumped on me. If we eliminate Saturday from our data, what is my new standard deviation?

X _i	$X_i - \overline{X}$	$(X_i - \overline{X})^2$
140		
179		
150		
197		
150		
138		


$$\sum (x - \bar{X})^2 =$$

d. Your answer to part c should have been smaller than your answer to part b. Why should we have known, before doing any calculations, that removing Saturday's result would cause the standard deviation to go *down*?




3. A government inspector has been assigned to four bakeries: Acme Bakers, Buns R Us, Croissant Your Heart, Do Do Donuts. Over a period of several months, she buys several "one-pound" loaves from each bakery and measures them precisely. Here are her results:

Acme Baker

Buns R Us

Croissant your Heart

Do Do Donuts

- a. Estimate the mean weight of a "one-point loaf" from each bakery.
- b. Order the bakeries by standard deviation from lowest to highest.

Standard DeviationUse What You've Learned

C.	Which one of the bakeries most likely uses a machine to measure their dough?
	Explain your reasoning.

- d. Which one of the bakeries most likely measures their dough by hand? Why?
- e. The inspector issues a fine to one of the bakeries. Which bakery, and why?
- 4. Create a data set that contains six values, which has a mean of 10 and a standard deviation of zero.

5. Create a data set that contains six values, which has a mean of 0 and a standard deviation of one hundred.

