

For each of the following three-dimensional shapes, determine the area of the base, identify the height, and determine the volume. Remember, a shape does not have to "sit" on the base.

5. Matt is building a sandbox for a shop project. He found plans for sandboxes with a triangular base, a square base, and a circular base. The depth of each sandbox shown is 6 inches, but Matt could revise the plans to make the depth of each box 9 inches or 12 inches. Before Matt selects a plan, he wants to know the volume of each sandbox. Determine the volume of each sandbox and record your answers in the table.

Sandbox	Volume when the depth is		
	6 inches or $\frac{1}{2}$ foot	9 inches or $\frac{3}{4}$ foot	12 inches or 1 foot
4 ft. 4 ft. Base: right triangle	V = Bh = $(\frac{1}{2} \cdot 4 \cdot 4) \frac{1}{2}$ = $(8) \frac{1}{2}$ = 4 cubic feet	V = Bh = $(\frac{1}{2} \cdot 4 \cdot 4) \frac{3}{4}$ = $(8) \frac{3}{4}$ = 6 cubic feet	V = Bh = $(\frac{1}{2} \cdot 4 \cdot 4) 1$ = (8) 1 = 8 cubic feet
4 ft. 4 ft. Base: square	V = Bh = $(4 \cdot 4) \frac{1}{2}$ = $(16) \frac{1}{2}$ = 8 cubic feet	V = Bh = $(4 \cdot 4) \frac{3}{4}$ = $(16) \frac{3}{4}$ = 12 cubic feet	V = Bh = (4 • 4) 1 = (16) 1 = 16 cubic feet
r = 2 ft. Base: circle	V = Bh = (π • 2 ²) $\frac{1}{2}$ ≈ (12.56) $\frac{1}{2}$ ≈ 6.28 cubic feet	V = Bh = (π • 2 ²) $\frac{3}{4}$ ≈ (12.56) $\frac{3}{4}$ ≈ 9.42 cubic feet	V = Bh = (π • 2 ²) 1 ≈ (12.56) 1 ≈ 12.56 cubic feet

6. How could you use the volume of each 6-inch deep sandbox to determine the volume of the 12inch deep and 9-inch deep sandboxes?

The 12-inch deep sandbox is two times the height of the 6-inch sandbox, so the volume is twice as large. The 9-inch deep sandbox is 1¹/₂ times the height of the 6-inch sandbox, so the volume is 1½ times as large. You could determine the volume of the 6-inch sandbox and multiply by 2 to determine the volume of the 12-inch sandbox and multiply by 11/2 to find the volume of the 9-inch sandbox.

7. How could you use the volume of each square-based prism to determine the volume of each triangular-based prism?

The triangular-based prisms are 1/2 the volume of the square-based prisms with the same height. This is because the area of the triangular base is $\frac{1}{2}$ the area of the square base.

