Sketch a double number line to represent each problem. Use your representation to solve the problem.

Each student in Mr. Johnson's fourth grade class opened a package of M\&Ms, separated the M\&Ms by color, and counted them.

1. Haley had a total of $54 \mathrm{M} \& \mathrm{Ms}$. One sixth of the M\&Ms in the package were red. How many M\&Ms were red?
How can you represent the problem with a double number line?
Use the double number line to show one package of M\&Ms is equal to $54 \mathrm{M} \& \mathrm{Ms}$. Divide both number lines into six equal parts.

How can you use the double number line to solve the problem in a way that makes sense?

One sixth of a package is equal to one sixth of 54. $54 \div 6=9$.

How do you interpret the answer?
There are nine M\&Ms in one sixth of the package.
2. Sam's package had 14 red M\&Ms. Two fifths of his package were red. How many M\&Ms were in Sam's package?
How can you represent the problem with a double number line?
Divide both number lines into five equal parts and show that two fifths of the package is equal to $14 \mathrm{M} \& \mathrm{Ms}$.

How can you use the double number line to solve the problem in a way that makes sense?

One fifth of a package is equal to half as much as two fifths of a package. One half of $14 \mathrm{M} \& M s$ is seven M\&Ms. If one fifth of a package equals seven M\&Ms, then a full package is equal to 5×7, or $35 \mathrm{M} \& \mathrm{Ms}$.

How do you interpret the answer?
Sam's package contained 35 M\&Ms.
3. Alex found 12 red M\&Ms out of a total of 48 . What fraction of Alex's M\&Ms were red? How can you represent the problem with a double number line?

The double number line shows that the whole package of M\&Ms is equal to $48 \mathrm{M} \& \mathrm{Ms}$. Estimate where to place $12 \mathrm{M} \& \mathrm{Ms}$.

How can you use the double number line to solve the problem in a way that makes sense?

You want to find the fraction that is equal to 12 out of 48 M\&Ms. Since $48 \div 12=4$, divide each number line into four equal parts. Twelve is one fourth of 48.

How do you interpret the answer?
One fourth of Alex's M\&Ms are red.
4. Mia ate all but the eight green M\&Ms in her package. If one sixth of the M\&Ms in Mia's package were green, how many M\&Ms were in her package?
How can you represent the problem with a double number line?
Use the double number line to show that one sixth of a package is equal to eight M\&Ms.

How can you use the double number line to solve the problem in a way that makes sense?

If one sixth of the package equals eight M\&Ms, then the entire package is equal to 6 x 8, or 48 M\&Ms.

How do you interpret the answer?
Mia's package contains 48 M\&Ms.
5. Three tenths of Sam's package were red M\&Ms. He had 15 red M\&Ms. How many M\&Ms were in Sam's package?
How can you represent the problem with a double number line?
Divide both number lines into 10 equal parts and show that three tenths equals 15 M\&Ms.

Fractional Parts of a Number
Use What You've Learned Answers and Explanations

How can you use the double number line to solve the problem in a way that makes sense?

Three tenths of the package is equal to $15 \mathrm{M} \& \mathrm{Ms}$, so one tenth of a package is equal to one third as much, or five $\mathrm{M} \& \mathrm{Ms}$. If one tenth of a package equals five $\mathrm{M} \& \mathrm{Ms}$, then a full package is equal to 10×5, or $50 \mathrm{M} \& \mathrm{Ms}$.

How do you interpret the answer?
Sam's package contains 50 M\&Ms.

