MAKING SENSE OF MATHEMATICS

1. Carmen is starting a job as salesperson at a jewelry store. The jewelry store offers her two salary plans. One plan includes a monthly base pay of $\$ 300$ plus 10% commission on her sales. The second plan is a monthly salary of $\$ 1200$. What must the amount of sales be for Carmen to make more money with the first plan?

Inequality $\quad 300+0.10 s>1200$
0.10 s represents 10% of the sales and this term is added to Carmen's $\$ 300$ base pay. This expression must be greater than $\$ 1200$.

$300+0.10 s>1200$	original inequality
-300	-300
subtract 300 from both sides of the	
inequality	

Graph

Carmen will need to sell more than $\$ 9000$ worth of jewelry to make more money with the first plan.

2. Admission to a local summer festival costs $\$ 6$ for adults and $\$ 4$ for children. Organizers want to know how many adult and children admissions are needed for income from admissions to exceed $\$ 10,000$. Interpret the graph below in terms of this situation? State three points that satisfy the inequality.

Inequality $\quad 6 a+4 c>10,000 \quad$ where a is adult admission (in dollars) and c is child admission (in dollars)

Graph Interpretation

Any point in the shaded region satisfies the inequality $6 a+4 c>10,000$. The dotted line represents the combination of adult and child admissions that equal $\$ 10,000$. Any point (whole numbers only) in the blue region or beyond represents the combination of sales for the income to exceed $\$ 10,000$.

Verification: Show all three points satisfy the inequality.

$6 a+4 c>10,000$	$6 a+4 c>10,000$	$6 a+4 c>10,000$
$6(200)+4(2500)>10,000$	$6(600)+4(2000)>10,000$	$6(1000)+4(1500)>10,000$
$11,200>10,000$	$11,600>10,000$	$12,000>10,000$

Note: If a point in the non-shaded region is selected such as $(600,1000)$, the point does not satisfy the inequality:

$$
\begin{array}{r}
6 a+4 c>10,000 \\
6(600)+4(1000) ? 10,000 \\
7600<10,000
\end{array}
$$

MAKING SENSE OF MATHEMATICS
3. Price High School is planning to partner with Papa Paul's Pizza Parlor and Polly's Desserts to raise money for their school. Each pizza sold raises \$3 and each dessert raises \$2.50 for the school. The school hopes to raise $\$ 1000$. What does the graph below mean in this situation? State three points that satisfy the inequality.

Inequality $3 p+2.50 d>1000 \quad$ where p represents number of pizzas sold and d represents the number of desserts sold.

Graph Interpretation

Any point in the shaded region satisfies the inequality $3 p+2.5 d>1000$. The dotted line represents the combination of pizza and dessert sales that equals $\$ 1000$. Any point (whole numbers only) in the blue region or beyond represents the combination of sales for the income to exceed $\$ 1000$.

Verification: Show all three points satisfy the inequality.

$3 p+2.50 d>1000$	$3 p+2.50 d>1000$	$3 p+2.50 d>1000$
$3(0)+2.50(450)>1000$	$3(60)+2.50(350)>1000$	$3(100)+2.50(400)>1000$
$1125>1000$	$1055>1000$	$1300>1000$

Note: If a point in the non-shaded region is selected such as $(100,100)$, the point does not satisfy the inequality.

$$
\begin{array}{r}
3 p+2.50 d>1000 \\
3(100)+2.50(100) ? 1000 \\
550 ? 1000
\end{array}
$$

550 is less than 1000 , so the point $(100,100)$ is not in the shaded region.
4. The Hollywood Hits video store rents both games and movies. Each game costs $\$ 1.50$ and each movie rents for $\$ 2$. Charlie wants to spend less than $\$ 15$. What does the graph below mean in this situation? State three points that satisfy the inequality.

Inequality $1.5 \mathrm{~g}+2 \mathrm{~m}<15$ where g represents number of games rented and m represents the number of movies rented

Graph Interpretation

Any point in the shaded region satisfies the inequality $1.5 \mathrm{~g}+2 \mathrm{~m}<15$. The dotted line represents the combination of game and movie rentals that equals \$15. Any point (whole numbers only) in the blue region represents the combination of rentals that cost less than \$15.

Verification: Show all three points satisfy the inequality.

$1.5 g+2 m<15$	$1.5 g+2 m<15$	$1.5 g+2 m<15$
$1.5(2)+2(5)<15$	$1.5(3)+2(4)<15$	$1.5(8)+2(1)<15$
$13<15$	$12.5<15$	$14<15$

Note: If a point in the non-shaded region is selected such as $(10,10)$, the point does not satisfy the inequality.

$$
\begin{array}{rl}
1.5 \mathrm{~g}+2 \mathrm{~m} & <15 \\
1.5(10)+2(10) & ? 15 \\
35 & ? 15
\end{array}
$$

35 is greater than 15 , so the point $(10,10)$ is not in the shaded region.

