Write an algebraic equation to represent each situation and then solve the equation.

1. Jake is working at the Happy Hollow Apple Orchard picking apples. He is paid $\$ 2$ for each 5-pound container of apples that he picks. So far today, he has picked 7 containers of apples. His goal for the day is to pick 125 pounds of apples. How many more containers must he pick to reach his goal?
The $\$ 2$ in the problem is additional information that will not be used to find out the number of containers. It will be helpful to relate the number of containers to the number of pounds of apples. Each container holds 5 pounds of apples. If x represents the number of containers, then $5 x$ represents the number of pounds of apples. Since he has already picked 7 containers, he has 35 pounds of apples $(7 \times 5=35)$.

Equation
$5 x+35=125$ where x is the number of containers

Solve the equation

$$
\begin{array}{rll}
5 x+35 & =125 & \\
5 x-35-35 \\
5 x & & \text { original equation } \\
\text { subtract } 35 \text { from both sides of the equation } \\
\frac{5 x}{5} & =\frac{90}{5} & \\
x & =18 & \\
\text { divide by } 5 \text { on both sides of the equation } \\
\text { solution }
\end{array}
$$

Jake should pick 18 more containers of apples.
Check 18 containers is equivalent to 90 pounds of apples $(18 \times 5=90)$. He already picked 7 containers (or 35 pounds). $90+35=125$ pounds, which was his goal.
2. Denise has a summer job that pays her $\$ 6$ per hour. It costs her $\$ 10$ per week for roundtrip transportation to her job. She wants to save half of what she has left (after transportation) with her goal being to save $\$ 55$ each week. How many hours must she work each week to do this?

To build the equation for this problem, multiply $\$ 6$ times h where h is the number hours worked. Then subtract $\$ 10$ (her transportation cost) from this expression and divide by 2 (since she wants to save half of her remaining income). The result will be $\$ 55$.

Equation
$\frac{6 h-10}{2}=55$ where h is the number of hours Denise works.

Solve the equation

$$
\frac{6 h-10}{2}=55 \quad \text { original equation }
$$

$$
2\left(\frac{6 h-10}{2}\right)=2(55)
$$ multiply both sides of the equation by 2

$$
6 h-10=110
$$

$$
+10+10
$$ add 10 to both sides of the equation

$$
6 h \quad=120
$$

$$
\frac{6 h}{6}=\frac{120}{6}
$$

divide by 6 on both sides of the equation $h=20$ solution

Denise should work 20 hours per week.
Check 20 hours per week times $\$ 6$ is $\$ 120$ per week. Subtract transportation costs $\$ 120-\$ 10$ is $\$ 110$. Save half $\$ 110 \div 2$ is $\$ 55$.
3. Theresa earns $\$ 10$ per hour. If she works on Thanksgiving, she earns twice as much per hour. She earned $\$ 470$ for the week including Thanksgiving. How many hours did Theresa work on Thanksgiving if she worked 35 hours during the rest of the week?

Since Theresa typically earns $\$ 10$ per hour, she would earn twice that amount, \$20 per hour, on Thanksgiving. To build the equation for this problem take $\$ 20$ times h where h is the number hours worked on Thanksgiving Day. In addition, she has already earned \$350 from the first 35 hours of work at a rate of $\$ 10$ per hour. She earns a total of $\$ 470$.

Equation
$20 h+350=470$ where h is the number of hours worked on Thanksgiving
Solve the equation

$$
\begin{array}{rlrl}
20 h+350 & =470 & & \text { original equation } \\
20 h & \frac{-350}{}=-350 & & \text { subtract } 350 \text { from both sides of the equation } \\
\frac{20 h}{20} & =\frac{120}{20} & & \\
h & & & \\
\text { divide both sides of the equation by } 20 \\
\text { solution }
\end{array}
$$

Theresa worked 6 hours on Thanksgiving Day.

MAKING SENSE OF MATHEMATICS
$\$ 20$ times 6 hours is $\$ 120$ for Thanksgiving pay. $\$ 10$ times 35 hours is $\$ 350$ for regular pay. $\$ 120+\$ 350$ is $\$ 470$ for total earned during Thanksgiving week.
4. You can build three connected squares with 10 toothpicks. How many connected squares can you build with 103 toothpicks?

To build the equation, notice that it takes three additional toothpicks each time to complete one more square. This means the starting value (no squares) would be 1.

This might be easier to visualize in the table.

\# of squares	\# of toothpicks
1	4
2	7
3	10

Another way to think about the pattern is to look at the figure. Notice that when there are 3 squares, there are 3 horizontal toothpicks on the top of the squares and 3 horizontal toothpicks on the bottom of the squares. There are 4 vertical toothpicks (or one more than the \# of squares). This pattern holds for any number of squares. So the number of horizontal toothpicks (top and bottom) is $2 x$ and the number of vertical toothpicks is $x+1$. The equation could be written $2 x+(x+1)=103$. This can be simplified $3 x+1=103$.

Equation $3 x+1=103$ where x is the number of connected squares formed by the toothpicks

$$
\begin{array}{rlrl}
3 x+1 & =103 & & \text { original equation } \\
-1 & -1 & & \text { subtract 1 from both sides of the equation } \\
3 x & =102 & & \\
\frac{3 x}{3} & =\frac{102}{3} & & \\
& & \text { divide each side of the equation by } 3 \\
x & =34 & & \text { solution }
\end{array}
$$

34 connected squares can be formed by using 103 toothpicks.

Check There are 34 toothpicks on top. There are 34 toothpicks on bottom. There are 35 vertical toothpicks. The total is $34+34+35=103$ toothpicks.

