

2.

After watching the video, Making Sense of Logarithm Properties, complete the following problems.

1. Find the decimal approximations for the following quantities, using a calculator **only** when needed.

a.	log2 0.30103	log3 0.47712	log6 0.77815 no calc	log2+log3 0.77815 no calc	
b.	log6 0.77815	log 36 1.55630 $log(6^2) = 2 log$ no calc	g6	log6+log6 1.55630 no calc	
C.	log6 0.77815	log2 0.30103	log 72 1.85733 $log(2 \cdot 6^2) = log(2 \cdot 6^2)$	og2+2log6	log6+log6+log2 1.85733 no calc
It is a fact that			$\log 3 \approx 0.477$	1	

 $\log 5 \approx 0.6990$ $\log 7 \approx 0.8451$

Without using a calculator, approximate the following quantities to four decimal places. (Hint: The properties proved in the video Making Sense of Logarithm Properties will be useful.)

a.	log 15	1.1761; log 15 = log 3 + log 5
b.	log 35	1.5441; log 35 = log 5 + log 7
c.	log 105	$2.0212; \log 105 = \log 3 + \log 5 + \log 7$

3. Find decimal approximations for the following quantities, using a calculator when needed.

log 3	log 3 ²	2log 3
0.47712	0.95424	0.95424
	log 3 + log 3	no calc
	no calc	

- 4. Using the facts given in #2, approximate:
 - a. $\log 243$ (Hint: $243 = 3^5$)

2.3855; $\log 243 = \log 3^5$ or 5·log3 (Note: The number in the ten-thousandths place is different than you would get using a calculator but it is what you would get by using the properties.)

b. log 45

1.6532; $\log 45 = \log (3^2 \cdot 5)$, or $\log 3^2 + \log 5 = 2 \cdot \log 3 + \log 5$

- c. log 5 0.84510
- d. log 7^a a(0.84510)
- 5. Fill in the blanks with the generalization used in the above problems.
 - a. $\log ab = \log a + \log b$
 - b. $\log a^2 b = \frac{\log a + \log a + \log b}{\log a + \log b}$
- 6. Without a calculator, determine if the following are true or false. Explain your reasoning for any false solutions.
 - a. $\log 5a = \log 5 + \log a$ True
 - b. $(\log 2)^3 = \log 8$

False;
$$\frac{\log 8 = \log 2^{3}}{(\log 2)^{3} \neq \log 2^{3}}$$

- c. log25 = 2log5 True
- d. log (a+9) = (log a) (log 9) False; there is no log property that allows us to split apart the log of a sum. Compare this to a true statement $log a + log 9 = log(a \cdot 9)$

e.
$$\log(\sqrt[3]{2+x}) = \frac{\log(2+x)}{3}$$

True

