After watching the video, Making Sense of Logarithm Properties, complete the following problems.

1. Find the decimal approximations for the following quantities, using a calculator only when needed.
a. $\log 2$
0.30103
log 3
0.47712
$\log 36$
1.55630
$\log \left(6^{2}\right)=2 \log 6$
no calc
b. $\log 6$
0.77815
$\log 6 \quad \log 2+\log 3$
$0.77815 \quad 0.77815$
no calc no calc
c. $\log 6 \quad \log 2$
0.30103
$\log 6+\log 6$
1.55630
no calc
0.77815
$\log 72$
1.85733
$\log \left(2 \cdot 6^{2}\right)=\log 2+2 \log 6$ no calc
$\log 6+\log 6+\log 2$
1.85733
no calc
2. It is a fact that

$$
\begin{aligned}
& \log 3 \approx 0.4771 \\
& \log 5 \approx 0.6990 \\
& \log 7 \approx 0.8451
\end{aligned}
$$

Without using a calculator, approximate the following quantities to four decimal places. (Hint: The properties proved in the video Making Sense of Logarithm Properties will be useful.)
a. $\log 15$
1.1761; $\log 15=\log 3+\log 5$
b. $\log 35$
$1.5441 ; \log 35=\log 5+\log 7$
c. $\log 105$
2.0212; $\log 105=\log 3+\log 5+\log 7$
3. Find decimal approximations for the following quantities, using a calculator when needed.

$\log 3$	$\log 3^{2}$	$2 \log 3$
0.47712	0.95424	0.95424
	$\log 3+\log 3$	no calc
	no calc	

MAKING SENSE OF MATHEMATICS
4. Using the facts given in \#2, approximate:
a. $\log 243$ (Hint: $243=3^{5}$)
$2.3855 ; \log 243=\log 3^{5}$ or $5 \cdot \log 3$ (Note: The number in the ten-thousandths place is different than you would get using a calculator but it is what you would get by using the properties.)
b. $\log 45$
1.6532; $\log 45=\log \left(3^{2} \cdot 5\right)$, or $\log 3^{2}+\log 5=2 \cdot \log 3+\log 5$
c. $\log 5$
0.84510
d. $\log 7^{a}$
$a(0.84510)$
5. Fill in the blanks with the generalization used in the above problems.
a. $\log a b=\underline{\log a}+\log b$
b. $\log \mathrm{a}^{2} \mathrm{~b}=\underline{\log \mathrm{a}+\log \mathrm{a}+\log \mathrm{b}}$
6. Without a calculator, determine if the following are true or false. Explain your reasoning for any false solutions.
a. $\log 5 a=\log 5+\log a$

True
b. $(\log 2)^{3}=\log 8$

$$
\text { False; } \begin{aligned}
& \log 8=\log 2^{3} \\
& (\log 2)^{3} \neq \log 2^{3}
\end{aligned}
$$

c. $\log 25=2 \log 5$

True
d. $\log (a+9)=(\log a)(\log 9)$

False; there is no log property that allows us to split apart the log of a sum. Compare this to a true statement $\log a+\log 9=\log (a \cdot 9)$
e. $\log (\sqrt[3]{2+x})=\frac{\log (2+x)}{3}$

True

