

- 1. The definition of logarithm is if  $a^x = y$ , then  $\log_a y = x$ , and if  $\log_a y = x$ , then  $a^x = y$ .
  - a. Complete the tables for an exponential function base 10 and a logarithmic function base 10.

| х  | 10 <sup>×</sup>              |
|----|------------------------------|
| 0  | 10 <sup>°</sup> =1           |
| 1  | 10 <sup>1</sup>              |
| 2  | $10^2 = 100$                 |
| 3  | $10^3 = 1000$                |
| 4  | 10 <sup>4</sup> = 10000      |
| 5  | 10 <sup>5</sup> = 100000     |
| 6  | $10^6 = 1000000$             |
| 7  | 10 <sup>7</sup> = 10000000   |
| 8  | 10 <sup>8</sup> = 100000000  |
| 9  | 10 <sup>9</sup> = 1000000000 |
| 10 | $10^{10} = 10000000000$      |

| у                | log <sub>10</sub> y |
|------------------|---------------------|
| 1                | 0                   |
| 10               | 1                   |
| 100              | 2                   |
| 1000             | 3                   |
| 10000            | 4                   |
| 10 <sup>5</sup>  | 5                   |
| 10 <sup>6</sup>  | 6                   |
| 10 <sup>7</sup>  | 7                   |
| 10 <sup>8</sup>  | 8                   |
| 10 <sup>9</sup>  | 9                   |
| 10 <sup>10</sup> | 10                  |

- b. Ten raised to what power is 1,000,000? Ten raised to the sixth power is 1,000,000.
- c. How can the definition of logarithms help you find log<sub>10</sub> 1000000?

Log<sub>10</sub> 1,000,000 is asking the question, "Ten raised to what power is 1,000,000?"

- d. Using the table, estimate  $log_{10}99,932$  to the nearest whole number. Log<sub>10</sub> 99,932 is asking the question, "Ten raised to what power is 99,932?" An exponent that is a little less than 5 is the solution since 10<sup>4</sup> is 10,000 and 10<sup>5</sup> is 100.000. The best whole number estimate would be 5.
- e. Using the table, estimate  $10^{3.1}$ .  $10^3$  is 1000 and  $10^4$  is 10000.  $10^{3.1}$  is closer to  $10^3$  than  $10^4$ , so 1200 is a good estimate.

## 2. Complete the tables below. The base is **three** in both tables.

| 3 <sup>×</sup> | у   | log₃y |
|----------------|-----|-------|
| 1              | 1   | 0     |
| 3              | 3   | 1     |
| 9              | 9   | 2     |
| 27             | 27  | 3     |
| 81             | 81  | 4     |
| 243            | 243 | 5     |





a. Without using a calculator, compute the following base **three** logarithms.

i) 
$$\log_3(81) = 4$$
  
 $3^4 = 81$   
ii)  $\log_3(243) = 5$   
 $3^5 = 243$   
iii)  $\log_3(1) = 0$   
 $3^0 = 1$   
iv)  $\log_3(\frac{1}{3}) = -1$   
 $3^{-1} = \frac{1}{3}$   
v)  $\log_3(\frac{1}{9}) = -2$   
 $3^{-2} = \frac{1}{9}$ 

- 3. Moore's Law states, informally, that the computing power of a chip doubles every two years.
  - a. Make a table showing how the computing power of a chip increases, where *n* is the number of doubling periods.

| n | 2 <sup>n</sup> |
|---|----------------|
| 0 | 1              |
| 1 | 2              |
| 2 | 4              |
| 3 | 8              |
| 4 | 16             |
| 5 | 32             |
| 6 | 64             |

b. According to Moore's Law, how long will it take the computing power of a chip to increase by a factor of 64?
This question can be rewritten, what is the value of n if log<sub>2</sub>64 = n (where n is the number of doubling periods). Since 2<sup>6</sup> = 64, n = 6. So, there will be 6 two-year periods which totals 12 years.





- c. According to Moore's Law, by what factor will the computing power of the chip increase in 16 years? This question can be rewritten, what is the value of f if  $\log_2 f = 8$  (where f is the factor of increase of the computing chip)? Note that 8 is the number of two-year periods for 16 years. The computing power of the chip is increased by a factor of 256 ( $f = 2^8$ ).
- 4. Assume the population (*p*) of a virus in a human body triples every hour.
  - a. If we start with 1 virus in a body, how many will there be in three hours?

| t | 3 <sup>t</sup> |
|---|----------------|
| 0 | 1              |
| 1 | 3              |
| 2 | 9              |
| 3 | 27             |
| 4 | 81             |
| 5 | 243            |
| 6 | 729            |

Use the equation  $\log_3(p) = t$ , where t is the number of hours and p is the population of the virus. For this problem we need to find  $\log_3 p = 3$ . Rewriting,  $3^3 = p$ , or 27 = p. So, the population of the virus is 27 in three hours.

- b. How long will it take for the population of viruses to be 243? In the equation  $\log_3 243 = t$ , t = 5 hours. It may be helpful to think of  $3^t = 243$ . It will take 5 hours for the population of viruses to be 243.
- c. How many viruses will there be in one day? This can be represented as  $\log_3(p) = 24$ . Note that 24 hours is used instead of one day since t = hours. Rewriting the equation using the definition of logarithms  $3^{24} = p$ , or p = 282,429,536,481 viruses.
- d. Is the equation below a valid representation for the number of viruses in a human body? Why or why not?  $t = \log_3(p)$  (t = time in hours, p = population) Yes, since  $p = 3^t$ , we have  $\log_3(p) = t$ .





5. The following is a graph of  $y = 4^{x}$ . Use the graph to estimate  $\log_4(8000)$ . Express  $log_4(8000)=x$  in exponential form by using the definition of logarithms.  $4^{x}=8000$ . Then, use the graph to find an estimate. Start at y=8000 and move horizontally to the graph of the function. Then, move directly down to the x-axis. The value of x is estimated to be a little less than 6.5.



